If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18x-9=0
a = 6; b = -18; c = -9;
Δ = b2-4ac
Δ = -182-4·6·(-9)
Δ = 540
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{540}=\sqrt{36*15}=\sqrt{36}*\sqrt{15}=6\sqrt{15}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-6\sqrt{15}}{2*6}=\frac{18-6\sqrt{15}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+6\sqrt{15}}{2*6}=\frac{18+6\sqrt{15}}{12} $
| -(5v+3)(v-5)=0 | | 3(2x)+10(2)-20=5 | | 7y-13=29 | | x-1/5=x+2/4 | | 4x–9=6x–13 | | 3(2)y+10(2)-20=5 | | 3x-35=2x-21 | | −2(b−2)=2−7b | | -3x*(5+(-3/x))=51 | | -(x-4)=-x-4 | | 7x16=6x+6 | | 2(b+5)-(9+b)=-4 | | -5x-3=-3-5x | | 12a+15+20=2400 | | c=5c+21 | | 7x=16=2 | | 10(x)=6x+2 | | 25(-1)y-5(-1)+8=38 | | -(v+3)(5v-5)=0 | | -3x*(5+-3/x)=51 | | x+32+x+54=180 | | 7.94=2*3.14r | | 4x-16=2(x-1) | | x+62=55 | | 2(k-3/3=12 | | (7x-3)+2x-6=180 | | 7(w-2)-4=-3(-7w+8)-5w | | 5x–10=0 | | 5(x)=3x+1 | | 313=400-6x | | −3x⋅(5+−3X)=−51−3x⋅(5+−3X)=−51 | | x/7=-12. |